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DUAL CHANNEL FFT ANALYSIS (PART II) 

by
 

H. Herlufsen, (M.Sc.) 

ABSTRACT 
In the first part of this article the basic dual channel FFT measurement was 
introduced and Frequency Response Function estimates and excitation tech- 
niques were discussed. 
In the second part of this article the time domain functions, Impulse Response 
Function, Autocorrelation and Cross Correlation and their physical interpretation 
is dealt with in some detail. The implementation of the Hilbert Transform on these 
time domain functions, to compute the corresponding complex analytical signals, 
is introduced, and the advantages of using the magnitude in the presentation of 
these functions in some practical situations are illustrated. 
Calculation of sound intensity from a dual channel measurement of the sound 
pressure signals from two closely spaced microphones is discussed in terms of 
advantages and disadvantages. 
Formulae for random errors on some of the functions derived from a dual channel 
measurement on random data are also given. 

SOMMAIRE 
La première partie de cet article donnait les notions de base des mesures FFT en 
bi-voie, et discutait des estimations des réponses en frequence et des techniques 
d'excitation. 
Cette deuxième partie traite plus en detail des fonctions du domaine temporel et 
de réponse impulsionnelle, de I'auto-corrélation, de l'intercorrelation et de leur 
interpretation physique. Elle introduit aussi l'application de la transformée de 
Hilbert à ces fonctions temporelles pour calculer les signaux analytiques com- 
plexes correspondants, et illustre par quelques cas pratiques les avantages de 
I'utilisation de I'amplitude pour la representation de ces fonctions. 
Le calcul de I'intensite acoustique à partir de la mesure bi-voie de la pression 
sonore de deux microphones rapprochés est traité par comparaison des pours et 
des contres. 
Des formules d'erreurs aléatoires sur quelques unes des mesures en bi-voie sur 
des données aléatoires sont également données. 
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ZUSAMMENFASSUNG 
Der erste Teil dieses Artikels war eine Einführung in die Zwei-Kanal-FFT-Meß- 
technik. Es wurden Übertragungsfunktionsnäherungen und Anregungstechniken 
diskutiert. 
Der zweite Teil beschäftigt sich detailierter mit Zeitbereichsfunktionen, Impulsant- 
wort, Autokorrelation und Kreuzkorrelation sowie ihrer physikalischen Interpreta- 
tion. Die Anwendung der Hilbert-Transformation auf diese Zeitfunktionen zur 
Berechnung des komplexen analytischen Signals wird vorgestellt und der Vorteil 
der Darstellung des Betrags dieser Funktionen wird an einigen praktischen 
Beispielen illustriert. 
Die Vor- und Nachteile der Schallintensitätsmessung mit einem Zweikanalsystem 
und zwei dicht nebeneinander liegenden Druckmikrofonen wird diskutiert. 
Zusätzlich werden Formein fur die Berechnung der statistischen Fehler der aus 
der Messung stochastischer Daten mit dem Zweikanal-System abgeleiteten Funk- 
tionen gegeben. 

6. Impulse Response Function 
The ideal system defined in Section 4 and shown in Fig.14 can be 
described by its Frequency Response Function H{f) as discussed in 
Section 4. The corresponding time domain description of the system is 
given by the Impulse Response Function h(τ) which can be calculated 
from the Frequency Response Function by an inverse Fourier Transform. 

Physically the Impulse Response Function h(τ) is the response signal 
from the system caused by an unit impulse input signal at time 0. 
Mathematically the unit impulse signal is defined by the socalled Dirac 
delta function δ(t) (see Ref. [3] and [4] for instance). 

The Dirac delta function δ(t) is an impulse at t = 0, which is infinitely 
short in time and infinitely high in amplitude, such that its time integral is 
unity, i.e.: 

(6.1) 

The Fourier transform of δ(t) is unity at all frequencies i.e. 

F { δ(t) } = 1,       - ∞ < f < ∞ 

which means that all frequencies are excited to the same level if an input 
signal of a (t) = δ(t) is applied to the system. 
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According to eq. (1.2) (Part I of this article) we therefore have B(f) = 
H(f), since A(f) = 1 for a (t) = h (t). Thus 

               B(t) = F-1{ H(f) } = h(t) for a(t) = δ(t)                                              (6.2) 

Let us now consider a general input signal a(t) to the system and find 
the output signal b(t) from a time domain description. Any time signal 
a(t) can be written as a sum of weighted and time shifted delta functions 
i.e.: 

Each of these weighted and time shifted delta functions a(τ) δ(t-τ) at 
the input will at the output give a signal which is the Impulse Response 
Function, weighted with a(τ) and shifted τ in time i.e.: a(τ) h(t - τ). The 
output signal b(t) from the system, when excited with a(t) at the input, is 
therefore the superposition of these weighted and time shifted Impulse 
Response Functions, assuming linearity, giving: 

(6.3) 

b(t) is said to be the convolution of a(t) and h(t). Since a(t) * h(t) = 
h(t) * a(t), eq.(6.3) is the same as eq. (1.1) (Part I of the article). 

It can also be said that eq. (6.3) (or eq.(1.1)) is a direct consequence of 
the relation: B(f) = H(f) · A(f) (eq.(1.2)) and the Convolution Theorem 
for the Fourier Transform, which states that multiplication in one domain 
(here the frequency domain) corresponds to convolution in the other 
domain (the time domain). 

From equation (6.3) we can see that h(τ) acts as a "memory function" of 
the system. The output b(to) at time to not only depends upon the input 
value at time to, a(to), but also depends upon the previous values in a(t) 
weighted with the reversed Impulse Response Function h( to - t). 

Let us first consider a single degree of freedom system shown in Fig.35, 
which consists of a mass m supported by a spring, with a spring 
constant k, and a viscous damper with damping coefficient c. The mass 
is allowed to move in only one direction x. The input could be the force 
acting on the mass f(t), while the output could be the displacement x(t). 
The force caused by the spring is -kx(t) and the damping force is 
-cx(t), where x(t) is the velocity (time derivative of x(t)).  
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Fig. 35. Mechanical single degree of freedom system 

Having the force as the input and the displacement as the output, the 
Frequency Response Function of the system is the socalled compliance. 
It is for this simple system given by: 

where ω = 2 π f and X (ω) and F(ω) are the Fourier Transforms of x(t) and 
f(t) respectively. 

A is a constant and mathematically called the residue for the resonance. 
It is here imaginary and given by 

A =      1 
        j2mωd (6.5) 

In the literature the residue is sometimes defined by R = j2A, which is 
real valued, and (6.4) becomes 

H(ω) =   R   -      R          (6.6) 
 j2 [jω- (jωd-σ)]           j2 [jω - (- jω- (jωd-σ)] 

H (ω) = X (ω) =             1/m 

                F(ω)     -ω2 + jω c + k 
                                   m   m 

          A                   A* =
 jω – (j ω -σ)  

+
  jω-(-j ωd d - σ) (6.4) 

The constants ωd and σ are given by   k       c2 ωd= √  —— - ——                 (6.7) 
      m       4m2 

and σ = c                (6.8) 
2m 
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The corresponding Impulse Response Function h(t) is found by an 
inverse Fourier Transform of (6.4) or (6.6) and is given by 

h(t) = 2 | A | e-σ t sin (ωdt)                           (6.9) 

or                          h(t) = R e-σ t sin (ωdt)                                                    (6.10) 

Fig.36 shows an example of log | H(f) | and phase Φ(f) of H(f) and the 
corresponding h(t) for the single degree of freedom system. 

ωd is called the damped natural frequency and is the frequency (in 
radians per second) of the oscillations in h(t) (see Fig.36). σ is the decay 
rate determining the exponential decay of h(t), shown as the dotted 
envelope curve in Fig.36 (lower graph). 

Notice that the higher the damping is in the system the faster is the 
decay of the Impulse Response Function h(t) and the shorter will the 
effective length of h(t) be. 

The socalled undamped natural frequency ω0 is defined by 

If the system had no damping i.e. c = 0, the mass would be oscillating at 
a frequency of coo after an initial impulse excitation. 

The damping is also often given by the damping ratio ζ which is defined 
by 

ζ =   σ                                  (6.12) 
                                           ω0 

For ζ = 1 the system is said to be critically damped since in that 
situation ωd = 0 and there will be no oscillations in h(t). 

The Impulse Response Function can thus be used for determination of 
the damped natural frequency ωd, the decay rate σ and the constant A 
(or R) for a single degree of freedom system. A practical example of 
determination of decay rate σ will be given later. 

In some acoustical and electroacoustical applications, where an input 
can be defined and measured, the Impulse Response Function is used 
 

ω0 = √ ω2
d + σ2  = √ k (6.11) 

                                
 m 
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Fig. 36. Logarithmic amplitude log  H(f)  and phase φ(f) of the Fre-
 quency Response Function and corresponding Impulse Response
 Function of a single degree of freedom system 

for determination and recognition of reflections, their time delays and 
individual magnitudes. For non-dispersive media where no filtering oc- 
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curs in the frequency band of interest, reflections will show up as narrow 
peaks in the Impulse Response Function at the points in time corre- 
sponding to the delay times. The Impulse Response Function can there- 
fore also be used for identification of transmission paths  This 
technique has some advantages compared to the use of Cross Correla- 
tion Function, which is discussed in Section 7. Since the Impulse Re- 
sponse Function describes the system independent of the signals 
involved, the propagation paths can be recognized even though the input 
signal is shaped in frequency by some filtering. Filtering of the signals 
will cause the Cross Correlation Function to be smeared and can 
therfore make the transmission paths identification difficult. This will be 
illustrated in Section 7. In order to be able to calculate the Impulse 
Response Function, however, there has to be some input signal at all the 
frequencies of consideration, since the Frequency Response Function 
will be undefined at those frequencies where no input signal exists. 

Traditionally the Impulse Response Function hasn't been used very much 
compared to the Frequency Response Function. h(t) is a real valued 
function and is presented on a linear amplitude scale. The dynamic 
range of a linear presentation is very limited and oscillations in h(t) due 
to filtering of the signal in the system often complicates the interpreta- 
tion of the results. 

With the implementation of the Hilbert Transform in the time domain, all 
the time domain functions including the Impulse Response Function can 
be made analytical (complex), i.e. they will have a real and an imaginary 
part. They can therefore be presented in terms of magnitude and phase 
as well. The Hilbert Transform, which is defined as a convolution 
integral, is used to compute the imaginary part jã(t) of the analytical 
signal from the real valued time signal a(t). It is denoted by H and we 
have 

(6.13) 

and the socalled analytical time signal a(t) is then defined as 

(t) = a(t) + jã(t)                                   (6.14) 

The theory behind the Hilbert Transform is defined and discussed in Ref. 
[12] and [13]. It is found that the Hilbert Transform of a time function can 
be computed much simpler in the frequency domain compared to a 
direct calculation in the time domain. The spectrum of the time signal 
a(t) is shifted -90° for positive frequencies and +90° for negative 
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frequencies. An inverse Fourier Transform of this modified spectrum will 
result in the time signal a(f), which Is the Hllbert Transform of a(t). This 
technique is used in the B&K Analyzers Type 2032/2034. 

Having the complex (analytical) Impulse Response Function 

(6.15) 

the magnitude is defined as 

(6.16) 

while the phase is given by 

(6.17) 

The magnitude | h(t) | can be considered as being the envelope of h(t) 
and this presentation is often much more useful than just the real valued 
h(t). Firstly, the magnitude does not feature the oscillations often seen in 
h(t), but gives a smooth curve where identification of reflections, for 
instance, is much easier and where the peak amplitudes will be correct 
and consistent. Secondly, the magnitude can be shown on a logarithmic 
amplitude scale giving more dynamic range in the presentation of the 
data compared to the conventional linear scale. Fig.37 illustrates this for 
an acoustical system, where both the input and the output is measured 
by use of microphones. The Impulse Response Function in this and all 
the subsequent examples is computed as an inverse Fourier Transform 
of the Frequency Response Function estimate H1(f) (see Section 4, Part 
I of this article). In the upper graph the real valued h(t) is shown, while 
the lower graph shows the magnitude of the complex h(t) with a 
logarithmic amplitude scale. The magnitude of h(t) reveals more details 
in the Impulse Response Function, and the correct levels and time delays 
for the different reflections are easily found from the magnitude curve. 

In this example the input spectrum is band limited but the Impulse 
Response Function still detects the different reflections as narrow peaks 
at the different time delays. The Cross Correlation Function for the same 
signals does not resolve the reflections as clearly as the Impulse Re- 
sponse Function, due to the frequency band limitation. The Cross Corre- 
lation Function for the same signals will be shown in Section 7, (Fig.47). 



 

Fig. 37. Impulse Response Function of an acoustical system. In the upper 
graph the real valued h(t) is shown. In the lower graph the 
magnitude of the complex Impulse Response Function h(t) is 
plotted on a logarithmic amplitude scale 

Computation of the magnitude of the Impulse Response Function was 
implemented already several years ago by use of Time Delay Spectrom- 
etry (TDS). The magnitude of h(t) is then often referred to as the Energy 
Time Curve (ETC). For many acoustical and electroacoustical applica- 
tions the ETC created new interest and possibilities for the time (delay) 
domain description of systems (Ref. [13]). 

Let us return to the application of the Impulse Response Function for 
determination of damping, given by the exponential decay in h(t) (6.9) 
for a single degree of freedom system. When a measurement is per- 
formed over a frequency range where the system has several reso- 
nances, the Impulse Response Function will be complicated and more 
difficult to interpret. 

Assuming that the system is linear, it can be considered as a combina- 
tion of single degree of freedom systems (Fig.35) and is called a multi 
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degree of freedom system. The Frequency Response Function is there- 
fore a linear combination of single degree of freedom Frequency Re- 
sponse Functions of the form (6.4), shown in Fig.36. Each resonance is 
described by the resonance frequency ωd, the decay rate σ and the 
constant A (or R) called the residue. 

The Impulse Response Function will be the corresponding linear combi- 
nation of single degree of freedom Impulse Response Functions of the 
form (6.9), shown in Fig.36 (lower graph), and can therefore be written as 
 

where r is the resonance number (mode number). 

Fig. 38. Frequency Response Function (driving point accelerance of a 
mechanical system) revealing five resonances (upper graph). 
Pseudo-random force excitation is used. In the lower graph the 
first resonance is extracted by use of the weighting function 
shown in Fig.39. 
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If the different resonances are well separated in frequency, and the 
system is lightly damped, each resonance can be treated separately 
after the measurement, by application of a weighting function on the 
Frequency Response Function as exemplified in Fig.38. The Frequency 
Response Function (H1(f)) is here the driving point accelerance for a 
plate and is measured using shaker excitation. The shaker is attached to 
the structure via a force transducer and a push rod as shown in Fig.23 
(Section 5, Part I of the article). A pseudo-random excitation signal is 
used in order to avoid leakage in the analysis (see Section 4.6). The 
system is almost linear and the calculated Frequency Response Function 
in Fig.38 (upper graph) is therefore samples at f = k · ∆ f = k · 1/T of the 
true Frequency Response Function. 

In the lower graph of Fig.38 the first resonance (first mode of vibration) 
at 844 Hz (ωo ≅  ωd = 5303rad/s) is extracted by application of a 
rectangular weighting function, the position and width of which being 
defined by the user. Some tapering (half-Hanning) is applied in the 
beginning and at the end of the rectangular weighting in order to avoid 
sharp edges (truncation) in the edited Frequency Response Function. 
The weighting function applied in Fig.38 is shown in Fig.39. 

 

Fig. 39. The user defined weighting function used for extracting the first 
resonance, as shown in Fig.38. 
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Fig. 40. Real valued Impulse Response Function h(t) (upper graph) and 
magnitude of complex Impulse Response Function #(t), shown 
on a logarithmic amplitude scale (lower graph), for the first 
resonance 

An inverse Fourier Transform of the edited Frequency Response Func- 
tion (H1(f)) in the lower graph of Fig.38 results in the Impulse Response 
Function of this single resonance (first mode of vibration) and is shown 
in Fig.40 (upper graph). The magnitude of the corresponding complex 
(analytical) Impulse Response Function, (6.15) and (6.16), is computed 
and shown in the lower graph of Fig.40, with a logarithmic amplitude 
scale. The exponential envelope curve e-σ t, determined by the decay 
rate σ, can now be seen as a linear decay. The time constant τ of the 
exponential decay is given by τ = 1/σ. The decay corresponding to the 
time constant τ is given by the factor e-1 or in dB: -20 log(e) = -8,7 dB. 

By use of the reference cursor the time constant τ can be found directly 
and is for this resonance τ1 = 103,6ms, as seen from the ∆x readout in 
the lower right corner of Fig.40. The decay rate for this resonance is 
therefore 
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σ1 =   1    = 9,65 rad/s                                                        τ1 

and the damping ratio is    ζ1 = 
σ1   = 0,0018.                                                 ω01 

In a similar manner the other resonances can be extracted from the 
same measurement and the decay rate of these can be found. In Fig.41, 
the second resonance (second mode of vibration) and the fifth reso- 
nance (fifth mode of vibration) are extracted using the same kind of 
weighting function as the one shown in Fig.39 shifted to the relevant 
resonance. 

The magnitude of the corresponding Impulse Response Functions on 
logarithmic amplitude scales are shown below the respective edited 
Frequency Response Functions. The time constants τ2 and τ5 are found 
to be τ2= 92,0 ms and τ5 = 48,9 ms (see ∆x in the cursor read outs). This 
corresponds to decay rates of 
σ2 = 10,9 rad/s and σ5 = 20,4rad/s respectively. 

The undamped natural frequency ω0r, on is approximately equal to the 
damped natural frequency ωdr, since the damping is light and is 1204 Hz 
and 2312 Hz (i.e. 7565 rad/s and 14527 rad/s) for the two resonances. 
This gives damping ratios of ζ2 = 0,0014 and ζ5 = 0,0014 respectively. 

The decay rate for a resonance can also be determined from the half 

power (3dB) bandwidth ∆f = ∆ω of the resonance peak in the Frequen-                                                   2 π
 cy Response Function, assuming that the resonance is well separated 

from other resonances. In this case σ is given by σ = π f or in terms of 

damping ratio ζ = π∆f = ∆f. For lightly damped structures it is nec-                                    ω0         2f0  

essary to use a frequency resolution which is high in order to find the 
half power bandwidth of the resonances. Zoom analysis will therefore 
often be required and several measurements must be performed in order 
to cover the frequency range of interest. Using the Impulse Response 
Function calculation in combination with the editing technique as shown, 
only one baseband measurement is required in order to find the decay 
rate (or damping ratio) for the different resonances. Notice however that 
pseudo-random excitation has to be used in order to avoid leakage. 
Leakage will have the effect of broadening out the resonance peak (see 
Fig.10) and the estimated decay rate will therefore be wrong (too high), 
at least when H1(f) is used for calculation of the Impulse Response 
Function. 
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Fig. 41. a) Extraction of the second resonance and the corresponding 
Impulse Response Function 

b) Extraction of the fifth resonance with the corresponding 
Impulse Response Function. 
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A zoom analysis, using random noise excitation and a resolution of 
0,25 Hz (compared to a resolution of 4 Hz in the baseband measurement) 
on each of the three resonances (first, second and fifth resonance) gave 
the following 3dB bandwidths: 

∆f1 = 3,10 Hz, ∆f2 = 3,15 Hz and ∆f5 = 6,25 Hz 

The corresponding decay rates are: 
σ1 = 9,8 rad/s, σ2 = 9,9rad/s and σ5 = 19,7rad/s, 

corresponding quite well with the results from the Impulse Response 
Functions. Since each zoom analysis is 16 times slower than the base- 
band analysis (16 times higher resolution) the total analysis time for the 
three resonances is 3 x 16 = 48 times longer when using zoom analysis 
compared to the baseband and Impulse Response Function method. 

Fig. 42. Same Frequency Response Function as in Fig.38, here measured 
by use of Impact Hammer excitation. The first resonance is 
extracted by use of a weighting function (upper graph) and the 
corresponding Impulse Response Function (magnitude of) is 
shown with logarithmic amplitude scale in the lower graph 
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Impact hammer excitation can also be used for the test, and the 
baseband analysis and Impulse Response Function method can be 
applied. The extra artificial damping caused by the exponential weight- 
ing function, which might be applied on the response signal in Channel 
B, is known and can be corrected for as explained in Section 5.6. Fig.42 
shows the edited driving point accelerance for the same structure, point 
and direction as used before (Fig.38). The analysis bandwidth of 4 Hz is 
also the same. The first resonance is extracted by use of the same 
weighting function as used in the lower graph of Fig.38 and shown in 
Fig.39. The time constant of the Impulse Response Function is found to 
be τ1 = 52,12ms. The exponential weighting which was applied on the 
response signal had a length (time constant) of τw  = 99,97ms. Thus the 
true decay rate is 

σ1 =  1   -    1   =  19,18rad/s -10,00rad/s = 9,18rad/s, τ1        τw 

which is the same, within 5% accuracy, as the decay rate found in the 
test using pseudo-random excitation with a shaker. 

7. Autocorrelation and Cross Correlation 

The mathematical definitions of the Autocorrelation Function Raa(τ) of a 
signal a(t) and the Cross Correlation Function Rab(τ) between two 
signals a(t) and b(t) are given by 

Comparing these definitions to the definition of covariance σab between 
two variables a and b given by (3.2) it is seen, apart from the subtraction 
of the mean values µa and µb

 in σab, that the Autocorrelation Raa(τ) is 

the covariance of the time signal a(t) and a replica of this signal 
displaced τ in time i.e. a(t+τ)). Likewise, the Cross Correlation Rab(τ) is 
the covariance of a(t) and the time signal b(t) with a displacement of τ 
in time i.e. b(t+τ). 

The practical interpretation of Autocorrelation Function Raa(τ) is there- 
fore to what degree the time signal a(t) is similar with a displaced 
version of itself as a function of the displacement τ. Likewise the Cross 
Correlation Function Rab(τ) gives a measure of the degree of similarity 
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between the time signal a(t) and a displaced version of the time signal 
b(t) as a function of the time displacement τ. 

In practice it is often more convenient to work with the normalised 
Correlation Functions given by: 

ρ aa (τ) = Raa(τ )                                      (7.3)                                                                       Raa(0) 

and (7.4) 

ρaa(τ) and ρab(τ) are called the Autocorrelation Coefficient Function and 
the Cross Correlation Coefficient Function respectively. Raa(0) is the 
total power in the signal a(t) given by 

and Rbb(0) is the total power in the signal b(t) given by 

It can be shown that | ρaa (τ) | ≤ 1 and that | ρab(τ) | ≤ 1 for all τ. 

ρaa (τ) and ρab (τ) correspond to the Correlation Coefficient ρxy defined 
by (3.1). 

From (7.1) and (7.2) it is easily shown (using the convolution theorem for 
the Fourier Transform) that the Autocorrelation Function Raa(τ) and the  
Cross Correlation Function Rab(τ) are related to the Autospectrum 
SAA(f) and the Cross Spectrum SAB(f) via the Fourier Transform as: 

and 

When Raa(τ) and Rab(τ) are calculated from a dual channel FFT mea- 
surement, (7.5) and (7.6) are used as seen in Fig.2 (Section 2). The 
inverse Fourier Transform performed in practice is of course the inverse 
DFT (or rather inverse FFT) as discussed in Section 2.1. 
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Since SAA(f) is real and even Raa(τ) is also real and even i.e. 
Raa(τ) = Raa(-τ). Rab(τ) is also real, because SAB(f) is conjugate even, 
but is in general not even, because SAB(f) in general have an imaginary 
part different from zero. 

The obvious applications of the Autocorrelation Function are: 

a) Detection of echoes (reflections) in the signal. 
If an echo (reflection) with a time delay of τo exists in the signal, the 
Autocorrelation Function will peak at τ = τo (apart from at T = 0) and 
the value of the Autocorrelation Coefficient Function at τo, ρaa(τo),' 
will give a measure of the relative strength of the echo (reflection). It 
is here assumed that the signal is a broadband signal, which will 
become clear shortly. 

b) Detection of periodic signals buried in random noise 
The Autocorrelation Function of a periodic signal is also periodic, 
since a periodic signal will correlate with itself at a delay of one 
period T, two periods 2 T, etc. The random background noise signal 
will have an Autocorrelation Function which diminishes to zero with 
increasing delay and the periodic signal can therefore be detected 
after a certain delay time in the Autocorrelation Function. 

Fig.43 shows the Autocorrelation Coefficient Function ρaa for a) broad- 
band random noise, b) sinewave and c) sinewave buried in broadband 
random noise. 

The Autocorrelation Coefficient Function for the broadband random 
noise diminishes very quickly to zero (Fig.43.a)). This is a consequence 
of the socalled uncertainty principle for functions related by the Fourier 
Transform. If the bandwidth of the Autospectrum GAA(f) is ∆f and the 
width of the Autocorrelation Function Raa(τ) is ∆t, the uncertainty 
principle states that 

∆f · ∆t ≥ 1                                                     (7.7) 

In the example, Fig.43 a), the bandwidth of the random noise is ∆f≈ 
1040 Hz and it is seen that ρxy(τ) ≈ 0 for τ = ∆ t = 1,4 ms ≥   1    = 0,96ms.                                                                                                      ∆f 

The Autocorrelation Coefficient Function for the sinewave is a cosine 
with the same period length T as shown in Fig.43.b). The sinewave 
correlates 100% with itself with delays of τ = 0, τ = 1 period length, τ = 2 
period lengths etc. In Fig.43.b) the period length is 1,251 ms (see cursor 
readout ∆X). 
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Fig. 43. Autocorrelation Coefficient Function for different types of signals 
a) Broadband random noise b) Sine wave 
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Fig. 43. Autocorrelation Coefficient Function for different types of signals 
c) Sine wave buried in broadband random noise 

It is thus obvious that detection of echoes (reflections) can only be 
performed using the Autocorrelation Function if the signal is broadband 
and with enough bandwidth that the corresponding peaks in the Auto- 
correlation Function become sufficiently narrow and well separated. 

It should be mentioned that for this application, use of the Cepstrum is 
often preferred over use of the Autocorrelation Function, since the 
Cepstrum is less sensitive to the shape of the Autospectrum. A descrip- 
tion of Cepstrum techniques is found in Ref. [14]. 

In Fig.43.c) it is seen that the Autocorrelation Coefficient Function 
detects the periodic signal (a sinewave) which is buried in the random 
background noise. 

If the periodic signal is a signal containing several frequency compo- 
nents it might be more suitable to use the Autospectrum rather than the 
Autocorrelation Function since the frequencies of the different compo- 
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nents and their levels are directly detected in the Autospectrum. Zoom 
analysis might however be required if their levels are very low compared 
to the background noise level. 

The most common applications of Cross Correlation Function are the 
following: 

a) Determination of time delays. If a signal is propagating from one 
point A to another point B the Cross Correlation Function Rab(τ) 
between the signals a{t) and b{t) at the two points will have a peak 
at the time displacement corresponding to the time delay (propaga- 
tion time) τ between the two points. It is assumed that the signals 
involved are broadband and that the propagation is non-dispersive 
which means that propagation velocity is independent of frequency. 
If the velocity depends upon the frequency the propagation is said to 
be dispersive and this will complicate the situation. There are two 
possibilities of getting around this problem. 

One possibility is to apply a weighting function on the Cross Spec- 
trum (similar to the weighting functions applied on the Frequency 
Response Function described in Section 6), before the inverse Fouri- 
er Transform, in order to find the Cross Correlation Function for only 
a limited frequency range, where the propagation velocity can be 
considered as nearly constant. The peak in the Cross Correlation 
Function will of course be smeared out as a consequence of the 
uncertainty principle (7.7). 

Another possibility is to use the phase of the Cross Spectrum 
directly, since this is related to the delay time. For a single delay of 
τo(f) the phase of the Cross Spectrum is ΦAB(f) = 2 π f τo(f) and the 
time delay can thus be found as a function of frequency τo(f). 

b) Identification of transmission paths. If there are several transmis- 
sion paths for the signal from point A to point B there will be several 
peaks in the Cross Correlation Function, one peak for each transmis- 
sion path at a delay time τn corresponding to the propagation time 
τn for the nth path. The amplitude of each peak in the Cross 
Correlation Coefficient Function will give a measure of the relative 
strength of each transmission path. Again it is here assumed that the 
signals are broadband and that the propagation is non-dispersive. If 
the propagation is dispersive, application of weighting functions on 
 

23 



 

the Cross Spectrum before the inverse Fourier Transform as de- 
scribed under a) might still make identification of transmission paths 
possible. 

c) Detection of signals buried in extraneous noise. If a signal s(t), 
which can be either deterministic or random, is buried in extraneous 
noise in both a(t) and b(t) i.e. a(t) = s(t) + n(t) and b(t) = s(t) + 
m(t), where n(t) and m(t) are assumed to be uncorrelated, the Cross 
Correlation Function Rab(τ) will only contain information about the 
correlated part s(t) in a(t) and b(t). 

This is because the uncorrelated noise terms n(t) and m(t) at each 
frequency will be averaged out in the Cross Spectrum SAB(f) which 
therefore will only contain contribution from the correlated parts in 
a(t) and b(t) as explained in Section 2.1. In the situation considered 
here the Cross Correlation Function Rab(τ) will give the Autocorrela- 
tion Function RSS(τ) of the signal s(t) without any influence from n(t) 
and m(t). 

Fig.44 illustrates the applications a) and b). In this acoustical experiment 
the input is measured with a microphone close to a sound source and 
the output is measured with a microphone at a distance of approximate- 
ly 1,1m. 

The source generates broadband random noise and the input Autospec- 
trum GAA(f) (upper graph of Fig.44) is seen to be fairly flat over the 
frequency range considered (0-12,8 kHz). The Cross Correlation Coeffi- 
cient Function ρab(τ). shown in the middle graph, reveals a number of 
propagation paths (direct sound and reflections). The peaks correspond- 
ing to the different paths are narrow, because the signals are broadband 
and it is quite easy to separate the paths and find their propagation 
times. 

Fig.45 shows similar results when the source is fed by band-limited 
random noise. The Cross Correlation Coefficient Function ρab(τ) (the 

graph in the middle) again reveals the different propagation paths, but 
the peaks are now very broad due to the frequency band limitation of the 
signals involved. The broadening of the peaks complicates the identifi- 
cation of the different reflections which illustrates one of the difficulties 
often encountered in practice. 
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Fig. 44. The input Autospectrum of a broadband random noise signal 
from a sound source (upper graph). Real valued ρab(τ) (middle 
graph). Magnitude of the complex ρab(τ) (lower graph) 
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Fig. 45. The input Autospectrum of a band limited random noise signal 
from the sound source (upper graph). Real valued ρab(τ) (middle 
graph). Magnitude of the complex ρab(τ') (lower graph) 
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In other words, the signals have to be so broadband that the peaks in 
the Cross Correlation Function become narrow and separated, exactly 
as discussed for application of Autocorrelation Function for detection of 
echoes. 

For the same reasons, as those mentioned for the analytical Impulse 
Response Function h(t) in Section 6, it is an advantage in many situa- 
tions to work with the analytical Autocorrelation Coefficient Function 
ρaa(τ) and the analytical Cross Correlation Coefficient Function ρab(τ) 
rather than with the real valued ρaa(τ) and ρab(τ)- These are defined by: 

and 

ρaa(τ)  = ρaa(τ) + jρaa(τ) 

ρab(τ)  = ρab(τ) + jρab(τ) 

(7.8) 

(7.9) 

where -ρaa(τ) and -ρab(τ) are the Hilbert Transforms of ρaa(τ) and 
ρab(τ) respectively. The lower graphs in Fig.44 and 45 show the magni- 
tude of the analytical Cross Correlation Coefficient Functions corre- 
sponding to the real valued Cross Correlation Coefficient Functions 
 

Fig. 46. Same results as for Fig.44, but obtained with zoom analysis 
between 512 and 13312 Hz 

27 



 

shown in the graphs in the middle. The peaks are easier to identify since 
the oscillations in ρab(τ) are avoided. This is specially an advantage in 
the situation with band limitation as in Fig.45. If a zoom analysis is 
performed, the magnitude |  ρab(τ) | should also be used for measure- 
ment of the peak amplitudes for the different reflections, since the real 
part ρab(τ) might not peak where | ρab(τ) | peaks. Fig.46 illustrated this 
where the exact same signals as in Fig.44 are analysed, however using a 
zoom analysis from 512Hz to 13312hz. This frequency range covers all 
the important information as does the baseband frequency range used in 
Fig.44. In the real part ρab(τ), an amplitude for the peak at 3,3ms is 
found to be 0,36, while the magnitude | ρab(τ) | gives an amplitude of 
0,51 which is the same as the amplitude found in Fig.44. 

In Fig.47 the magnitude of the Cross Spectrum GAB(f) and the magni- 
tude of the Cross Correlation Coefficient Function are shown for the 
same signals, as those analyzed by use of the Impulse Response 
Function in Fig.37 (Section 6). The main reflections can still be seen in 
the Cross Correlation Coefficient Function, but their peaks are so 
 

 

Fig. 47. Magnitude of Cross Spectrum and 
Magnitude of Cross Correlation Coefficient Function of the 
same signals as those analyzed by Impulse Response Func- 
tion in Fig.37. 
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smeared out, due to the band limitation seen in the Cross Spectrum, that 
some of the smaller reflections are not detected. Fig.37 shows that the 
Impulse Response Function is insensitive to this band limitation of the 
input signal, since it describes the system independent of the signals 
involved. 

Note that there has to be some power in the input signal at all the 
frequencies in the analysis bandwidth, before a well-defined Frequency 
Response Function (and thereby a well-defined Impulse Response Func- 
tion) can be computed. 

Since we are working with the DFT (or rather FFT) which computes the 
spectra at discrete frequencies, the effect of circular correlation has to 
be taken into account. As a consequence of computing the spectra at 
discrete frequencies k ∆ f = k1/T, the time signals are artificial period 
signals ranging from -∞ to +∞ with the time record in the analyzer of 
length T being the period length. The computed Correlation Functions 
are the Correlation Functions of these artificial periodic time signals 
displaced relative to each other, and a circular correlation effect, as 
shown in Fig.48, will appear. The end of one signal (end of the period in 
one signal) will overlap with the beginning of the other signal (the 
beginning of the period in the other signal) and the estimated Correlation 
Function will be incorrect. In Fig.48 (lower graph) the Correlation Func- 
 

Fig. 48. Circular correlation effect. The Correlation Function is assumed 
to be even in the lower graph 
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Fig. 49. Zero pad of the time records in order to avoid the effect of the 
circular correlation shown in Fig.48. The bow tie correlation is 
shown in the lower graph 

tion between the two signals is assumed to be even, which is not the 
case in general for Cross Corrleation Functions. This problem of circular 
correlation is overcome by setting the signal equal to zero in the second 
half of the record as illustrated in Fig.49. This is called "zero pad". The 
zero pad will, however, also cause the estimated Correlation Function to 
be biased, but the bias error is known and can be corrected for. Due to 
the artificial nullifying of the signals in the last half of the record the 
estimated Correlation Function ^R(τ) will be lower than the true Correla- 
tion Function R(τ), the extent depends upon the displacement τ. The 
relation is 

R̂(Τ) = |T/2 – τ |  R(τ)   ;  0 ≤ τ ≤ T/2                                   (7.10) 
 T/2 

assuming rectangular weighting in the analysis. 
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|T/2 - τ | Correction for the factor -—-—— is called the "bow tie" correction (see 
                                               T/2 
Fig.49) and can be applied as a post-processing after the measurement. 
 
In Fig.49 the Correlation Function R(τ) is assumed to be even (as in 
Fig.48), which only in general is true for Autocorrelation Functions. 

In all the measurements shown in this Section, zero pad and rectangular 
weighting has been used. 

If the signals involved are transients with a duration shorter than T/2, the 
bow tie correction should obviously not be used. 

8. Sound Intensity 

                                                                    → The sound intensity is a vector quantity I describing the direction and the 
amount of the net flow of acoustic energy at a given position in a sound 
field. 

A dual channel FFT measurement of the sound pressure signals from 
two closely spaced microphones can be used for calculation of the 
sound intensity. The calculated intensity is the component Ir of the 
intensity vector I in the direction given by the line joining the acoustic 
centres of the two microphones. 

Fig.50 shows a microphone probe where the two microphones are 
placed in a face to face configuration (the B&K Sound Intensity Probe 
Type 3519). This sound intensity probe features very little disturbance of 
the sound field. The shadowing effect of one microphone on the other is 
minimal and the effective separation between the microphones is well 
 

Fig. 50. Two microphone sound intensity probe (B&K Type 3519) with the 
microphones in face to face configuration. The component Ir of 
the sound intensity vector I, is measured positive in the direction 
indicated by the arrow (from microphone A to microphone B) 
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defined. A side by side configuration of the microphone is also used 
sometimes, for instance in situations where the space is very confined or 
when measurements has to be performed as close as possible to a 
surface. 

It can be shown that the intensity component Ir, with the direction from 
microphone A to microphone B defined as the positive direction, is given 
by 

                          Ir = -     1       Im {GAB(f)}                                                    (8-1)                                    ωρ∆r 

where Im {GAB(f)} is the imaginary part of the one-sided Cross Spec- 
trum between the two sound pressure signals pA(t) and pB(t), ρ is the 
density of air and ∆r is the spacing between the microphones. The air 
density is given by the ambient pressure p (in mbar) and the air 
temperature t (in °C) via the formula 

ρ = 0,3485     p      [   kg    ]                  273 + t      m3 
In the B&K Analyzers Types 2032 and 2034, the microphone spacing ∆r, 
the ambient pressure p and temperature t are entered from the front 
panel and the sound intensity is calculated according to (8.1) from the 
basic dual channel measurement. The sound pressure Autospectra 
GAA(f) and GBB(f) are therefore available as well from the same mea- 
surement. The reactivity of the sound field defined as LK = LI - LP, where 
LI is the intensity level (in dB relative to 1 pW/m2) and LP is the sound 
pressure level (in dB relative to 20 µ Pa), can be checked from the same 
measurement. The reactivity LK should always be checked, since it is 
one of the factors which determines the statistical errors in the intensity 
estimates and should be within the dynamic range of the analysis. For a 
plane wave propagating in free field the reactivity is zero dB (LP = LI) 
and the sound field is called an active sound field. In an ideal diffuse 
field the intensity is zero and the sound field is purely reactive. 

The sound intensity can also be calculated directly in real time using the 
formula 

                            Ir = -   1      (pA + pB) ∫ (pB – pA) dt                                    (8.2)                                    2 ρ ∆ r     

where the bar indicates time averaging and PA and pe are the sound 
pressure time signals as before. This approach is implemented using 1/3 
octave and 1/1 octave (and 1/12 octave) digital filters in the B&K Intensity 
Analyzer Type 3360. 
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Compared to this technique one of the advantages of using the two 
channel FFT approach to sound intensity is that, since the spectrum is 
calculated in narrow bands with constant bandwidth, this method is very 
suitable for detection and recognition of pure tones, in a sound field. 
There might be several closely spaced pure tones, coming from different 
directions, which can only be separated using narrow band analysis, 
assuming that these frequency components are sufficiently stable. Har- 
monic related frequency components in the sound field can also easily 
be identified using constant narrow bandwidth and a linear frequency 
scale. Fig.51 shows an example where the B&K Analyzer Type 2032 is 
used. The sound intensity is shown on a socalled bipolar display, where 
positive intensity components point upwards in the upper half of the 
display and negative intensity components point downwards in the lower 
half of the display. One sound source is seen to radiate harmonic related 
frequency components in a direction towards the front of the probe and 
gives a resulting positive intensity level at these frequencies. Another 
source, which radiates broadband random noise in the opposite direc- 
tion at the probe position, is causing the net flow of acoustical energy, in 
the direction of the probe, to be negative at the other frequencies. 

One of the disadvantages of using the two channel FFT approach as 
opposed to the digital filter method is that the analysis can only be 
performed in real time in a limited frequency span. Since Hanning 
weighting is used when analyzing normal continuous signals, there has 

Fig. 51. Example of a narrow band sound intensity spectrum, calculated 
from a two channel measurement (B&K Analyzer Type 2032 or 
2034) 
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to be 75% overlap of the time records in order to get true real time 
analysis, i.e. a resulting (overall) weighting function on the time signals 
which is flat (see Ref.16). This means for instance that for the high speed 
B & K Analyzer Type 2032 a true real time analysis can only be performed 
in a frequency span which is not wider than ~1/4 x 5 kHz. The digital 
filter Analyzer Type 3360 will always work in real time up to 10kHz in the 
1/3 octave and 1/1 octave mode. 

Another disadvantage of the two channel FFT approach is that longer 
averaging time is needed in order to get the same statistical accuracy in 
the measurement as by use of the digital filter analyzer, except for very 
low frequencies. The broader bandwidths of the 1/3 octave or 1/1 octave 
filters give an averaging in frequency which will decrease the random 
error (see Section 9). Specially if the sound field is very reactive (high 
sound pressure level compared to the intensity level) as in diffuse sound 
fields, the sound intensity measurement using two channel FFT can be 
very time consuming in order to obtain a certain statistical accuracy of 
the estimated sound intensity spectrum. 

Consider an example where a number of averages nd = 500 is required 
in order to get a specified statistical accuracy. 

a) FFT Method: 
Let us assume that we are working with a frequency span which is so 
wide that the analysis time for computing one sound intensity spec- 
trum, is longer than the record length in the analyzer. For the high 
speed B&K Analyzer Type 2032, this means that the frequency span 
is wider than 5kHz. One sound intensity spectrum is computed 
approximately every 160msec giving a total analysis time of Ttotal ≈ 

500 x 160 msec = 1 min 20 sec. 

b) Digital Filter Method: 
nd = 500 is equivalent to a BT product (Bandwidth x Averaging Time) 
of 500. For the 1/3 octave at 1 kHz, for instance, B ≈ 230 Hz and the 
 
total analysis time is therefore TTotal = 500 ≈ 2,2 sec. For the 1/3 oc- 
                                                                     B 
tave filter at 10kHz, TTotal ≈ 0,22sec and for the 1/3 octave filter at 
100 Hz, TTotal ≈ 22 sec. 

For many applications it is also much easier to handle and interpret the 
reduced amount of data from a 1/3 octave or a 1/1 octave analysis. Since 
acoustic measurements are often specified in 1/3 octave or 1/1 octaves, 
an analysis using the system with the standardized filters would be 
preferred. 

34 



 

Finally it should be mentioned that the digital filter system Type 3360 is a 
dedicated intensity measurement system giving some practical advan- 
tages for the user, such as a remote control unit and a separate display 
unit. 

The basic limitations in the two microphone approach to analysis of 
sound intensity are the same for both systems. The finite distance Ar 
between the two microphones gives an upper bound for the useful 
frequency range in the analysis, and the phase mismatch between the 
two channels in the measurement system, including the microphones, 
gives a lower limit on the frequency range. A discussion of this is found 
in Ref.15 and 22. 

The principal applications of sound intensity are: a) sound power deter- 
mination, b) ranking of noise sources, c) noise source location (for this 
purpose it is often useful to make an intensity mapping in terms of 
contour plots or 3-D plots, made by use of further post-processing and 
plotting routines), d) transmission loss determination, e) sound absorp- 
tion measurements. 

Examples of these applications are dealt with in the References [15, 20, 
21, 27-30] and will not be discussed further in this article. 

9. Statistical errors in the estimates 

When the analysis is performed on random signals (time histories) the 
different functions derived from a dual channel FFT measurement are 
estimated with limited accuracy. It is here assumed that we have station- 
ary, continuous or transient random signals, which are band-limited 
Qaussian distributed white noise signals over the analysis bandwidth. 

Averaging of the Autospectra and the Cross Spectrum is performed over 
only a finite number of records nd giving the estimates SAA(f), SBB(f) 
and SAB(f) of SAA(f), SBB(f) and SAB(f) by: 
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From these two-sided spectral density estimates, the one-sided spectral 
density estimates GAA(f), GBB(f) and GAB(f) are calculated according to 
(2.8) and (2.9) (Part I of the article, Section 2). 

The errors can be divided into two types, bias errors b[X] and random 
errors σ[X], where X is the estimate of the true value X. A bias 
error b[X] is a systematic error introduced either in the measurement 
or in the analysis (post-processing). In some situations a bias error can 
be estimated either by performing certain measurements (of phase and 
gain differences in the two instrumentation channels for instance) or 
from theoretical calculations. The bias error can in such situations be 
corrected for, but this is not the case in general. 

The random error σ[X] is the standard deviation of the estimates X and 
is due to the fact that averaging is not performed over an infinite number 
of records i.e. over infinitely long time, as shown in (2.4), (2.5) and (2.7). 
Averaging over the finite number of records nd causes a random scatter 
in the estimates. 

The bias error b[X] is defined by: 

                               B [x] = E [x] - X                                                             (9.4) 

while the random error is defined as the standard deviation of X and 
therefore given by (see (3.3) in Section 3): 

 

σ[X] = √E[(X – E [X])2]                               (9.5) 

E[   ] means "expected value of" and X is the true value. 

Often it is more practical to work with the normalized errors instead of 
the absolute errors b[X] and σ[X], The normalized bias error ∈ b, and 
the normalized random (standard) error ∈ r gives the error as a fractional 
portion of the true value and are defined by: 

                                            ∈ b = b [X]                                                         (9.6) 
                                                     X 

   ∈ r = σ[X] 
            X 

It is assumed that X ≠ 0. 

(9.3) 
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Fig. 52. Illustration of bias error and random error 

Fig.52 gives an illustration of how a bias error and a random error 
influences the estimates of a value. 

Bias errors in the different functions can be due to several effects such 
as 

a) Extraneous noise at input and/or at output. 
b) Other inputs to system which are correlated with measured input. 
c) Leakage (resolution bias). 
d) Non-linearities. 
e) Propagation time delays not compensated for. 

The effects of a), b) and c) were dealt with for the Frequency Response 
Function estimates in Section 4 and the influence of non-linearities were 
mentioned in Sections 3 and 5, and shall therefore not be discussed 
further here. If there is a propagation time delay τ from input to output 
of the system, this time delay has to be set between the records in the 
dual channel FFT measurement (see Fig.13 Section 3). Otherwise the 
Cross Spectrum will be biased with a factor of (1 - τ/T), where T is the 
record length in the analysis. Thus 

GAB(f) ≈ (1 – τ/T) GAB(f)   ,   0 ≤ τ ≤ T                          (9.8) 

The functions derived from the Cross Spectrum will therefore also have 
a bias error.for example, the Coherence Function estimate is given by 

γ2 (f) ≈ (1 - τ/T)2 γ2(f)   ,   0 ≤ τ ≤ T                            (9.9) 

The random errors will now be discussed for the Autospectral and Cross 
Spectral density estimates and for the estimates of Coherence Function 
and Frequency Response Functions. These formulae were developed by 
Bendat and Piersol (Ref. [23] and [24]). The random errors associated 
with the sound intensity measurements will also be given. 
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The distribution of the data is assumed to be Gaussian (normal). This is 
a fair assumption when the random error ∈ r is small. The filtering (FFT 
analysis) also tends to make the distribution of the time data closer to 
the Gaussian distribution. 

For Gaussian distributed estimates X (without any bias error ∈ b) it can 
be shown that there is approximately 68% chance of the true value X to 
be within the interval, 

                      X (1 - ∈  r) ≤ X ≤ X (1 + ∈  r)                                    (9.10) 

and approximately 95% chance of the true value to be within the interval 

                    X (1 – 2 ∈ r) ≤ X ≤ X (1 + 2 ∈ r)                                                (9.11) 

9.1. Auto Spectral and Cross Spectral density estimates 

If averaging is performed over nd time records of the random signals 
a{t) and b(t), the normalized random (standard) error for a frequency 
component of the Autospectral density estimates GAA(f) and GBB(f) at 
any frequency is given by 

∈ r [GAA(f)] = ∈ r [GBB(f)] =   1                             (9.12) 
                                        √nd 

Notice that the random error is independent of frequency, nd corre- 
sponds to the socalled BT-product (product of analysis bandwidth B and 
total effective time record length TTotal) for the analysis. If rectangular 
weighting is used in the analysis we have B = ∆f = 1/T and TTotal = nd T, 
 
giving B · TTotal =  1  nd T = nd. T is the record length for each analysis. 
                                 T 
If a smooth weighting function such as the Hanning weighting is used, 
the bandwidth B will be wider than ∆f. The effective time length Teff of 
each record will, however, be correspondingly shorter than T, due to the 
time weighting function. For each independent record, B · Teff will be 
unity and therefore B · TTotal = B · Teff ·nd = nd. 

Since the effective time length is shorter than T when Hanning weighting 
is used, averaging of spectra estimates from time records having some 
overlap (50% or 75% overlap for instance) will allow for a higher BT- 
product i.e. a higher number nd, compared to an analysis performed with 
rectangular weighting for a given amount of time data, see Ref. [16]. 
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The magnitude | GAB(f) | of the Cross Spectral density GAB(f) will at any 
frequency be estimated with a normalized random error of 

9.2. Coherence Function estimates 

The Coherence Function γ2(f) will also be estimated with only a limited 
accuracy from the Autospectral and Cross Spectral density estimates. 

(9.14) 

Fig. 53. Normalized random error ∈ r[γ2(f)] of Coherence Function esti- 
mates as a function of number of averages nd, for different 
values of (true) Coherence γ2(f) 
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where γ2(f) is the Coherence Function. 

The lower the Coherence is in the measurement the more averaging is 
required in order to obtain a certain statistical accuracy in the estimate. 

This is intuitively clear due to the fact that the lower the Coherence is 
the more random variation will there be in the individual estimates 
A*i (f) · Bi(f) (see Fig.4 and 9, Section 2 and 3). 



 

The normalized random (standard) error is given by 

 

Some averaging will therefore always have to be performed in order to 
estimate the Coherence Function. Even if the Coherence is unity, aver- 
aging is required to verify this in a measurement. 

Fig.53 shows the relationship between the normalized random error 
∈ r [γ2(f)] and the number of averages nd for different values of (true) 
Coherence γ2(f). 

9.3. Frequency Response Function Estimates 

When the Frequency Response Function of an ideal system is estimated 
from H1(f) or H2(f) and the signals are random noise signals (band- 
width-limited, Qaussian distributed white noise signals) there is a ran- 
dom error in both magnitude and phase. The error depends upon the 
number of (independent) averages nd and the Coherence γ2(f) in the 
measurement. 

The normalized random error for the magnitude of the estimate 
 H(f) ( H1(f)  or  H2(f) ) is given by 

In Fig.54 the normalized random error ∈ r [ H(f) ] is plotted as a func- 
tion of number of averages nd for different values of Coherence γ2{f}. 
The more uncorrelated noise there is in the measurement i.e. the lower 
the Coherence is, the more averages have to be performed in order to 
get a certain statistical accuracy. 

Fig.55 shows the estimates of  H1(f)  and γ2(f) from a dual channel 
measurement on an electrical filter network with random noise excita- 
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If the number of averages nd = 1, we have that 

(9.16) 



 

tion. 100 averages are performed. The estimated Coherence γ2(f) at 
176 Hz is 0,6, due to uncorrelated noise at the output. The random error 
of γ2(f) is 

Thus there is 68% chance of the true value |H1(f)| at 176 Hz, to be 
within the interval (since we have no bias error, see Section 4.2) 

0,94 · |H1(f)| ≤ |H1(f)| ≤ 1,06 |H1(f)| 

Fig. 54  Normalized random error ∈ r [ |H1(f)| ] of magnitude of Frequency 
Response Function estimates (H1(f) or H2(f) as a function of 
number of averages nd for different values of Coherence γ2(f) 
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The random error for |H1(f)| at the same frequency is 

which in dB is ≈ 0,5dB. 



 

 

Fig. 55. Estimates of |H1(f)| and γ2 from a dual channel measurement 
on an electrical filter network, with random noise excitation and 
100 averages 

or in dB 
-24,8 dB ≤ |H1(f)| (dB) ≤ -23,8 dB since |H1(f)| = -24,3 dB. 
 

The random errors at the same frequency for the Autospectra GAA(f) 
and GBB(f) and the magnitude of the Cross Spectrum  GAB(f) , which 
are used for the calculations, are 

and 

Notice that these random errors are greater than the errors on the 
derived functions γ2(f) and  H1(f) . 

The random error for the phase angle φ(f) of H(f) can be approximated 
by 
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σ [φ (f)] ≈ ∈ r [ H(f) ]                                    (9.17) 

when the error ∈ r [ H(f) ] is small. Φ(f) is measured in radians. The 
true value H(f) is here assumed, with 68% confidence, to be inside a 
circle of radius σ [ H(f) ] and centered at H(f). Thus 

  

σ [Φ(f)] ≈ sin (σ [Φ(f)]) ≈ σ [ H(f) ] 
                                           H(f)  

 
giving equation (9.17), for small σ [Φ(f)] or ∈ r [ H(f)  ]. 

9.4 Sound Intensity 

The sound intensity Ir (component in the direction of the probe) in a 
random sound field is as the other functions, estimated with a limited 
statistical accuracy. The bias error basically depends on the spacing 
between the microphones (high frequencies) and on the residual phase 
mismatch between the two channels in the measurement system (low 
frequencies). This is described in the references. 

The random error is determined by the Coherence Function γ2(f) be- 
tween the two sound pressure signals pA(t) and pB(t), the phase angle 
φAB of the Cross Spectrum GAB(f) between the two signals and the 
number of averages nd. In Ref. [25] a formula for the normalized random 
error ∈ r [ Îr ] is derived 

Calculations of Coherence γ2(f) and phase angle φAB(f) in different 
situations are givep in Ref. [26]. These calculations indicate that the 
random error ∈ r [Îr] mainly depends upon the reactivity LK of the sound 
field, defined as the difference between sound intensity level LI and 
sound pressure level Lp, and also depends upon the interfering sound 
field in the different situations (diffuse background noise or an interfer- 
ing point source either perpendicular to or behind the probe, which 
points towards the source of interest). The random error, however, was 
found to be practically independent of the frequency and distance 
between the microphones. 

It is therefore very important to check and report the reactivity of the 
sound field where the intensity measurements are performed, in order to 
be able to judge the validity of the results. 
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News from the Factory 

Dual Channel Signal Analyzers Type 2032/2034 

 

The Analyzers Type 2032 and Type 2034 combine the use of realtime, 
digital filtering techniques with a 2 k (2048 points) Fourier Analysis in two 
channels. Thus 801-line spectra are calculated with a chosen resolution 
from 1,95 mHz to 32 Hz selected in binary steps anywhere in the fre- 
quency range from DC to 25,6kHz. 

Both analyzers are extremely fast. The standard version, Type 2034, has 
a real-time bandwidth of 1,6 kHz in single channel mode and 800 Hz in 
dual channel mode. The high speed version, Type 2032, is approximately 
six times faster. 

34 different functions are available such as Frequency Response, Im- 
pulse Response, Autospectra, Cross Spectrum, Correlation Functions, 
Enhanced Signals and their spectra, Distribution Functions, Coherence, 
Coherent Power, Sound Intensity, Cepstra, etc., etc. Most of these 
functions, including time domain functions, can be shown in 6 different 
formats: Real Part, Imaginary Part, Magnitude, Phase, Nyquist Plot and 
Nichols Plot. Two micro-processors are used in carrying out all the 
calculations: One for signal processing and the other for displaying 
(postprocessing) the data. Thus any function can be displayed at any 
time in any format and scaling, not only after a measurement has been 
completed, but also during a measurement. 
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The primary use of a dual channel analyzer is for system analysis, i.e. 
performing Frequency Response (and Impulse Response) measure- 
ments. Two different ways of calculating the Frequency Response Func- 
tion are implemented in the 2032/2034: The traditional way H1 = 
GAB/GAA and the new way H2 = GBB/GBA. H1 suppresses uncorrelated 
noise at the output and gives the best estimate at anti-resonances. H2 
suppresses uncorrelated noise at the input and gives the best estimate 
at the resonance peaks. 

The analyzers are equipped with extremely flexible trigger facilities. 

A Free Running, Internal, External or manual trigger source can be 
selected in addition to a Generator trigger, where data collection is 
synchronized to the sequence of the built-in, zooming pseudo-random or 
impulse generator. Zooming random noise and a sine signal with a 
selectable frequency are also available. 

Each channel can be independently set to have a Flat, Manning, Tran- 
sient, Exponential, Flat Top, Kaiser Bessel or User Defined weighting 
function. These weighting functions can even be applied to the Frequen- 
cy Response Function, Cross Spectrum and Autospectra before calculat- 
ing the Impulse Response, Cross Correlation and Autocorrelation 
Functions. 

The analyzers have seven cursor functions. Namely, Main Cursor, Har- 
monic Cursor, Sideband Cursor, Delta Cursor, Mask Cursor, Reference 
Cursor and even a Flex Cursor by which the x-axis can be scaled in any 
arbitrarily chosen engineering unit. 

In spite of the high level of complexity and sophistication, the analyzers 
are very easy to use, because operation is largely self-explanatory with 
all relevant control settings clearly shown on its display screen, and 
because complete measurement and display setups can be stored for 
later recall and use. 

The analyzers have a fully instrumented front end, by which they can 
accept signals from most B&K microphone preamplifiers, and via the 
Line Drive Amplifier Type 2644 from most accelerometers, force trans- 
ducers and the Impact Hammer Type 8202 in either of its channels. In 
addition, the 2032/2034 are equipped with DC-coupled direct inputs for 
the input of electrical signals. 
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Output of the data which is displayed on a 12-inch large raster screen 
can be made to an X-Y recorder, a video recorder or to the B&K 
Graphics Recorder Type 2313, where a complete copy of the screen 
including graphs and alphanumerics are made in less than 10 seconds. 
The 2032/2034 are also equipped with an extremely flexible and sophisti- 
cated IEC 625-1/IEEE Std. 488-1978/ANSI MC 1.1-1975 interface which 
allows simple connection to most desk-top calculators. 

Graphics Recorder Type 2313 

The Brüel & Kjær Graphics Recorder Type 2313 offers fast, fully annotat- 
ed, graphic plots of measured frequency spectra and time functions as 
presented on the display screen of B&K Digital Frequency Analyzers, as 
well as documents measurement data transmitted by other equipment 
furnished with an IEC/IEEE interface. 

For maximum operating flexibility, a range of interchangeable Applica- 
tion Packages is available. These plug-in the front of the 2313 and 
especially format data to suit different application requirements of B&K 
analyzing equipment. In addition, they permit a variety of special tasks 
to be carried for which extra equipment would normally be required. For 
example, several hundred complete measurement spectra can be stored 
in the Recorder for future print out or transmission to other equipment. 
Also, new types of measurement can be made using the 2313 to reformat 
stored and incoming data, plus use as a system controller is possible. 

Where use as a conventional alphanumeric printer/graphics recorder is 
concerned, the 2313 may be operated without an Application Package. 
High-resolution graphic plots are made using a 512-point print head and 
as many as 128 (ISO 646 and 2022) characters may be printed. It accepts 
50m rolls of electrosensitive paper (metallized type) and from just one 
roll the equivalent of 160 A 4 charts can be obtained. 
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